
© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 1

Introduction to PIC Programming

Programming Baseline PICs in C

by David Meiklejohn, Gooligum Electronics

Lesson 1: Basic Digital Output

Although assembly language is commonly used to programming small microcontrollers, it is less appropriate

for complex applications on larger MCUs; it can become unwieldy and difficult to maintain as programs

grow longer. A number of higher-level languages are used in embedded systems development, including

BASIC, Forth and even Pascal. But the most commonly used “high level” language is C.

C is often considered to be inappropriate for very small MCUs, such as the baseline PICs we have examined

in the baseline assembler tutorial series, because they have limited resources and their architecture is not well

suited to C code. However, as this tutorial series will demonstrate, it is quite possible to use C for simple

programs on baseline PICs – although it is true that C may not be able to make the most efficient use of the

limited memory on these small devices, as we will see in later lessons.

This lesson introduces the “free” compilers from HI-TECH Software and Custom Computer Services (CCS)

bundled with MPLAB
1
, both of which fully support all current baseline PICs

2
. As we’ll see, the HI-TECH

and CCS compilers take quite different approaches to many implementation tasks. Most other PIC C

compilers take a similar approach to one or the other, or fall somewhere in between, making these compilers

a good choice for an introduction to programming PICs in C.

This lesson covers basic digital output, through that standby of introductory microcontroller courses: flashing

LEDs – although the concepts can be applied to anything which can be controlled by a high/low, on/off

signal, including power MOSFET switches and relays.

It is assumed that you are already familiar with the material covered in those baseline assembler lessons 1 to

3. If not, you should review those lessons while working through this one. Specifically, this lesson does not

provide a detailed overview of the baseline PIC architecture, installing and using MPLAB or programmers

such as the PICkit 2. Instead, this lesson explains how to create C projects in MPLAB, and how to

implement the examples from the assembler lessons, in C.

In summary, this lesson covers:

 Introduction to the HI-TECH C and CCS PCB compilers

 Using MPLAB 8 and MPLAB X to create C projects

 Simple control of digital output pins

 Programmed delays

with examples for both compilers.

This tutorial assumes a working knowledge of the C language; it does not attempt to teach C.

1
 HI-TECH C is bundled with MPLAB 8 and MPLAB X, while CCS PCB is bundled with MPLAB 8 only.

2
 at the time of writing (February 2012)

http://www.gooligum.com.au/tut_baseline.html
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_6.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 2

Introducing HI-TECH C and CCS PCB

Up until version 8.10, MPLAB was bundled with HI-TECH’s “PICC-Lite” compiler, which supported all the

baseline (12-bit) PICs available at that time, including those used in this tutorial series, with no restrictions.

It also supports a small number of the mid-range (14-bit) PICs – although, for most of the midrange devices

it supported, PICC-Lite limited the amount of data and program memory that could be used, to provide an

incentive to buy the full compiler. However, in 2009, HI-TECH Software (since purchased by Microchip)

retired PICC-Lite, in favour of their new “HI-TECH C” compiler, and no longer supply or support PICC-

Lite. As such, PICC-Lite will not be covered in these tutorials.

HI-TECH C supports all baseline and midrange PICs, with no memory restrictions. It can be used for free,

when running in “Lite mode”. However, in this mode, most compiler optimisation is turned off, making the

generated code around twice the size of that generated by PICC-Lite.

Current versions of MPLAB 8 and MPLAB X (including the Linux and Mac OS versions) are bundled with

HI-TECH C. This gives those developing for baseline and midrange PICs easy access to a free compiler

supporting a much wider range of devices than PICC-Lite, without memory usage restrictions, albeit at the

cost of much larger generated code. And HI-TECH C will continue to be maintained, supporting new

baseline and midrange devices over time.

But if you are using Windows and developing code for a supported baseline PIC, it is quite valid to continue

to use PICC-Lite (if you are able to locate a copy – by downloading MPLAB 8.10 from the archives on

www.microchip.com, for example), since it will generate much more efficient code, while allowing all the

(limited) memory on your baseline PIC to be used. It can be installed alongside HI-TECH C. But to repeat –

PICC-Lite won’t be described in these lessons.

MPLAB 8 includes a free copy of CCS’s PCB C compiler for Windows, which supports most baseline PICs,

including those used in these tutorials. Although it’s now a little date (at the time of writing, the version

bundled with MPLAB was 4.073, while the latest commercially available version was 4.129), it remains

useful and is used in the baseline C tutorials.

If you are using MPLAB 8, you should select these compilers as options (“CCS PCB Full Install” and “HI-

TECH C for PIC10/12/16”) when installing MPLAB, to ensure that the integration with the MPLAB IDE

will be done correctly. A separate installer will be launched for HI-TECH C: select ‘Operate in Lite mode’

and then choose all the defaults during the install process.

If you use MPLAB X, you should select “HI-TECH C Lite Compiler for PIC10/12/16”, as well as the

MPLAB X IDE, from the MPLAB X download page. After installing MPLAB X, run the HI-TECH C

installer (the one you just downloaded), and select ‘Operate in Lite mode’, the same as in the MPLAB 8

install.

Custom Computer Services (CCS) “PCB”

CCS (www.ccsinfo.com) specialises in PIC development, offering hardware development platforms, as well

as a range of C compilers supporting (as of February 2012) almost all the PIC processors from the baseline

10Fs through to the 16-bit PIC24Fs and dsPICs. They also offer an IDE, including a “C-aware” editor, and

debugger/simulator.

“PCB” is the command-line compiler supporting the baseline (12-bit) PICs.

A separate command-line compiler, called “PCM”, supports the mid-range (14-bit) PICs, including most

PIC16s. Similarly, “PCH” supports the 16-bit instruction-width, 8-bit data width PIC18 series, while “PCD”

supports the 24-bit instruction-width, 16-bit data width PIC24 and dsPIC series. These command-line

compilers are available for both Windows and Linux. A plug-in allows these compilers to be integrated into

both MPLAB 8 and MPLAB X
3
.

3
 Note that the free version of the CCS PCB compiler, supplied with MPLAB 8, will not work with MPLAB X.

http://www.microchip.com/
http://www.gooligum.com.au/tut_baseline_C.html
http://www.ccsinfo.com/

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 3

CCS also offer a Windows IDE, called “PCW”, which incorporates the PCB and PCM compilers. “PCWH”

extends this to include PCH for 18F support, while “PCWHD” supports the full suite of PICs. A lower-cost

IDE, called “PCDIDE” includes only the PCD compiler.

The CCS compilers and IDEs are relatively inexpensive: as of February 2012, the advertised costs range

from US$50 for PCB, through US$150 for PCM, US$350 for PCW, to US$600 for the full PCWHD suite.

As we’ll see, the CCS approach is to provide a large number of PIC-specific inbuilt functions, such as

read_adc(), which make it easy to access or use PIC features, without having to be aware of and specify

all the registers and bits involved. That means that the CCS compilers can be used without needing a deep

understanding of the underlying hardware, which can be a two-edged sword; it is easier to get started and

less-error prone (in that the compiler can be expected to set up the registers correctly), but can be less

flexible and more difficult to debug when something is wrong (especially if the bug is in the compiler’s

implementation, and not your code).

Microchip “HI-TECH C”

HI-TECH Software (www.htsoft.com) was purchased by Microchip in 2009, and now support only

Microchip MCUs. Until recently (late 2009), they also offered an IDE (“HI-TIDE”), available for both

Windows and Linux, which includes a “C-aware” editor, and debugger/simulator. However, HI-TIDE is

being de-emphasised in favour of MPLAB integration, and although still available for download
4
, technical

support is no longer available.

HI-TECH C supports the whole PIC10/12/16 series in a single edition, with different licence keys unlocking

different levels of code optimisation – “Lite” (free, but no optimisation), “Standard” and “PRO” (most

expensive and highest optimisation).

HI-TECH C compilers are also available for the PIC18, PIC24, dsPIC and PIC32 families.

The HI-TECH compilers are more expensive than those from CCS: as of February 2012, the advertised costs

range from US$495 for the PIC10/12/16 compiler in “Standard” mode, through US$1195 for this compilers

in “PRO” mode, to $3795 for the HI-TECH C Enterprise Edition (a bundle supporting all PIC MCUs).

We’ll see that HI-TECH C exposes the PIC’s registers as variables, to be accessed “directly” by the

developer, in much the same way that they would be in assembler, instead of via built-in functions. This

means that, to effectively use the HI-TECH compilers, you need a strong understanding of the underlying

PIC hardware, equivalent to that needed for programming in assembler.

These differing approaches are highlighted in the examples below. Instead of trying to force either compiler

into a particular style, the examples for each compiler are written in a style similar in “spirit” to the sample

code provided with each. Although it is possible to map registers into variables in the CCS compilers, the

examples in these tutorials use the CCS built-in functions where that seems reasonable, since that is how that

compiler was intended to be used. However, identical comments are used where reasonable, to highlight the

correspondence between both C compilers and the original assembler version of each example.

Data Types

One of the problems with implementing ANSI-standard C on microcontrollers is that there is often a need to

work with individual bits, while the smallest data-type included in the ANSI standard is ‘char’, which is

normally considered to be a single byte, or 8 bits. Another problem is the length of a standard integer (‘int’)

is not defined, being implementation-dependent. Whether an ‘int’ is 16 or 32 bits is an issue on larger

systems, but it makes a much more significant difference to code portability on microcontrollers. Similarly,

the sizes of ‘float’, ‘double’, and the effect of the modifiers ‘short’ and ‘long’ is not defined by the standard.

4
 as of February 2012

http://www.htsoft.com/

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 4

So different compilers use various sizes for the “standard” data types, and for microcontroller

implementations it is common to add a single-bit type as well – generally specific to that compiler.

Here are the data types and sizes supported by CCS PCB and HI-TECH C:

You’ll see that very few of these line up; the only point of

agreement is that ‘char’ is 8 bits!

HI-TECH C defines a single ‘bit’ type, unique to HI-TECH C.

CCS PCB defines ‘int1’, ‘int8’, ‘int16’ and ‘int32’ types,

which make it easy to be explicit about the size of a data

element (such as a variable).

The “standard” ‘int’ type is 8 bits in CCS PCB, but 16 bits in

HI-TECH C.

But by far the greatest difference is in the definition of ‘short’:

in HI-TECH C, it is a synonym for ‘int’ and is a 16-bit type,

whereas in CCS PCB, ‘short’ is a single-bit type, the same as

an ‘int1’. That could be very confusing when porting code

from CCS PCB to another compiler, so for clarity it is

probably best to use ‘int1’ when defining single-bit variables.

HI-TECH C also offers the non-standard 24-bit ‘short long’

type. And note that floating-point variables in HI-TECH C

can be either 24 or 32 bits; this is set by a compiler option.

The only floating-point representation available in CCS PCB

is 32-bit, which may be a higher level of precision than is

needed in most applications for small applications, so HI-

TECH C’s ability to work with 24-bit floating point numbers

can be useful.

To make it easier to create portable code, HI-TECH C provides the standard ‘stdint.h’ header file, which

defines the C99 standard types such as ‘uint8_t’ and ‘int16_t’. Unfortunately, CCS PCB does not come with

a version of ‘stdint.h’, although the size of CCS types such as ‘int8’, and ‘int16’ is clear.

Example 1: Turning on an LED

In baseline lesson 1 we saw how to turn on a single LED, and leave it on; the (very simple) circuit, using a

PIC10F200, is shown below:

This circuit is intended for use with the Gooligum baseline training

board, where you can simply plug the 10F200 into the ‘10F’

socket, and connect jumper JP12.

If you have the Microchip Low Pin Count Demo board, which does

not support PIC10F devices, you will have to substitute a 12F508

or 12F509 and connect an LED to pin GP1: see baseline lesson 1

for details.

To turn on the LED on GP1, we must clear bit 1 of the TRIS,

configuring GP1 as an output, and then set bit 1 of GPIO, setting

GP1 high, turning the LED on.

Type HI-TECH CCS PCB

bit 1 -

int1 - 1

char 8 8

int8 - 8

short 16 1

int 16 8

int16 - 16

short long 24 -

long 32 16

int32 - 32

float 24 or 32 32

double 24 or 32 -

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 5

At the start of the assembly language program, the PIC was configured, and the internal RC oscillator was

calibrated, by loading the factory calibration value into the OSCCAL register.

Finally, the end of the program consisted of an infinite loop, to leave the LED turned on.

Here are the key parts of the 10F200 version of the assembler code from baseline lesson 1:

 ; ext reset, no code protect, no watchdog

 __CONFIG _MCLRE_ON & _CP_OFF & _WDT_OFF

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; apply internal RC factory calibration

 movlw b'111101' ; configure GP1 (only) as an output

 tris GPIO

 movlw b'000010' ; set GP1 high

 movwf GPIO

 goto $; loop forever

HI-TECH C

HI-TECH C projects in MPLAB are created in a similar way to assembler projects, but as we saw in baseline

lesson 1, the details depend on which version of the MPLAB IDE you are using.

MPLAB 8.xx

You should use the project wizard to create a new project, as before.

To specify that this is a HI-TECH C project, select the “HI-TECH Universal ToolSuite” when you reach

“Step Two: Select a language toolsuite”:

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 6

When completing the wizard, note that there is no need to add existing files to your project, unless you wish

to make use of some existing code, perhaps from a previous project. There is no equivalent to the MPASM

“template files” we saw in baseline lesson 1.

After finishing the project wizard, you can use the “File → Add New File to Project…” menu item to create

a ‘.c’ source file in your project folder.

It should appear under “Source Files” in the project window, as usual:

If you have installed more than one HI-TECH C compiler, you need to tell the HI-TECH toolsuite which

compiler, or

driver, to use.

Open the project

build options

window (Project

→ Build

Options… →

Project) then

select the

“Driver” tab, as

shown on the

right.

To select the

compiler you

wish to use,

move it to the top

of the list of

available drivers,

by using the

“Move up”

button). The

“Current driver”

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 7

panel shows which compiler will be used for your device; since not every compiler supports every PIC, the

toolsuite selects the first driver in the list which supports the device you are compiling for. When you have

selected the compiler you wish to use, click “OK” to continue.

 You are now ready to start coding!

MPLAB X

You should use the New Project wizard to create your new project, as usual.

When you reach step 5, “Select Compiler”, select “HI-TECH PICC” (taking care to select the version you

wish to use, if you have more than one HI-TECH C compiler installed), to specify that this is a HI-TECH C

project:

After completing the wizard, right-click ‘Source Files’ in the project tree within the Projects window, and

select “New → C Source File…” to create a ‘.c’ source file in your project folder:

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 8

Note that, when you right-click ‘Source Files’ and select the “New” sub-menu, to create a new file and add it

to your project, you are presented with a number of options, including any file types you have recently used,

and “Other”. This leads you to the “New File” dialog, which allows you to base your new file on an existing

template. You’ll find some templates for use with HI-TECH C under ‘Microchip Embedded’:

The “mainpicc.c” template is a reasonable start, but it’s slightly different from the C source code style used

in these tutorials, so we won’t use it here. Nevertheless, these code templates are a helpful feature of

MPLAB X, and as you become more experienced, you can even develop your own.

When you have created a blank C source file, it should appear in the project tree, as usual:

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 9

You can now use the editor to start coding!

HI-TECH C Source code

As usual, you should include a comment block at the start of each program or module. Most of the

information in the comment block should be much the same, regardless of the programming language used,

since it relates to what this application is, who wrote it, dependencies and the assumed environment, such as

pin assignments. However, when writing in C, it is a good idea to state which compiler has been used

because, as we have seen for data types, C code for microcontrollers is not necessarily easily portable.

So we might use something like:

/**

* *

* Filename: BC_L1-Turn_on_LED-10F200-HTC.c *

* Date: 5/2/12 *

* File Version: 1.0 *

* *

* Author: David Meiklejohn *

* Company: Gooligum Electronics *

* *

* *

* Architecture: Baseline PIC *

* Processor: 10F200 *

* Compiler: HI-TECH C v9.83 (Lite mode) *

* *

* *

* Files required: none *

* *

* *

* Description: Lesson 1, example 1 *

* *

* Turns on LED. LED remains on until power is removed. *

* *

* *

* Pin assignments: *

* GP1 = indicator LED *

* *

**/

Note that, as we did our previous assembler code, the processor architecture and device are specified in the

comment block. This is important for the HI-TECH compilers, as there is no way to specify the device in the

code; i.e. there is no equivalent to the MPASM ‘list p=’ or ‘processor’ directives. Instead, the

processor is specified in the IDE (MPLAB or Hi-TIDE), or as a command-line option.

The symbols relevant to specific processors are defined in header files. But instead of including a specific

file, as we would do in assembler, it is normal to include a single “catch-all” file: “htc.h”. This file

identifies the processor being used, and then calls other header files as appropriate. So our next line, which

should be at the start of every HI-TECH C program, is:

#include <htc.h>

Next, we need to configure the processor. A macro called ‘__CONFIG(x)’ is used to configure the

processor, in a very similar way to the __CONFIG directive in MPASM.

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 10

For the 10F200 version of this example, we have:

// ext reset, no code protect, no watchdog

__CONFIG(MCLRE_ON & CP_OFF & WDTE_OFF);

The configuration symbols used are different to those defined for the 10F200 in the MPASM include files.

For example, ‘CP_OFF’ instead of ‘_CP_OFF’ (no leading underscore), and ‘WDTE_OFF’ instead of

‘_WDT_OFF’ (note the extra ‘E’ in the HI-TECH C version of the symbol – subtle differences like this can be

difficult to notice!).

For the 12F508 or 12F509 version
5
, we have:

// ext reset, no code protect, no watchdog, int RC clock

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & OSC_IntRC);

Note the use of ‘OSC_IntRC’ instead of ‘_IntRC_OSC’. Again, it’s similar, but different to the assembler

version.

To see which symbols to use for a given PIC, you need to look in the header file for that device. For

example, for the 10F200, these symbols are defined in the “pic10f200.h” file, while those for the 12F508

are defined in “pic12f508.h”, in the “include” directory within the compiler install directory.

As with most C compilers, the entry point for “user” code is a function called ‘main()’.

So a HI-TECH C program will look like:

void main()

{

 ; // user code goes here

}

Declaring main() as void isn’t strictly necessary, since any value returned by main() is only relevant

when the program is being run by an operating system which can act on that return value, but of course there

is no operating system here. Similarly it would be more “correct” to declare main() as taking no parameters

(i.e. main(void)), given that there is no operating system to pass any parameters to the program. How you

declare main() is really a question of personal style.

At the start of our assembler programs, we’ve always loaded the OSCCAL register with the factory

calibration value (although it is only necessary when using the internal RC oscillator).

There is no need to do so when using HI-TECH C; the default start-up code, which runs before main() is

entered, loads OSCCAL for us.

HI-TECH C makes the PIC’s registers available as variables, so to load the TRIS register with 111101b

(clearing bit 1, configuring GP1 as an output), it is simply a matter of:

TRIS = 0b111101; // configure GP1 (only) as an output

Individual bits within registers, such as GP1, are also mapped as variables, so that to set GP1 to ‘1’, we can

write:

GP1 = 1; // set GP1 high

5
 The source code for the 12F508 and 12F509 is exactly the same.

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 11

Alternatively, because the header file defines a structure called GPIObits, with members GP0, GP1, etc., we

can use:

 GPIObits.GP1 = 1; // set GP1 high

This version can make it clearer that GP1 is part of GPIO; whichever style you prefer is ok.

Baseline lesson 2 explained that setting or clearing a single pin in this way is a “read-modify-write” (“rmw”)

operation, which may lead to problems, even though setting GP1 individually, as above, will almost

certainly work in this case.

To avoid any potential for rmw problems, we can load the value 000010b into GPIO (setting bit 1, and

clearing all the other bits), with:

 GPIO = 0b000010; // set GP1 high

Finally, we need to loop forever. There are a number of C constructs that could be used for this, but the one

used in most of the HI-TECH C sample code (and it’s as good as any) is:

for (;;)

{ // loop forever

 ;

}

Complete program

Here is the complete 10F200 version of the code to turn on an LED on GP1, for HI-TECH C:

/**

* Description: Lesson 1, example 1 *

* *

* Turns on LED. LED remains on until power is removed. *

* *

* Pin assignments: *

* GP1 = indicator LED *

* *

**/

#include <htc.h>

/***** CONFIGURATION *****/

// ext reset, no code protect, no watchdog

__CONFIG(MCLRE_ON & CP_OFF & WDTE_OFF);

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 TRIS = 0b111101; // configure GP1 (only) as an output

 GPIO = 0b000010; // set GP1 high

 // Main loop

 for (;;)

 { // loop forever

 ;

 }

}

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 12

The 12F508/509 version is the same, except for the different __CONFIG line, given earlier.

Building the project

Whether you use MPLAB 8 or MPLAB X, the process of compiling and linking your code (making or

building your project) is essentially the same as for an assembler project.

To compile the source code in MPLAB 8, select “Project → Build”, press F10, or click on the “Build”

toolbar button:

This is equivalent to the assembler “Make” option, compiling all the source files which have changed, and

linking the resulting object files and any library functions, creating an output ‘.hex’ file, which can then be

programmed into the PIC as normal. The other Project menu item or toolbar button, “Rebuild”, is equivalent

to the MPASM “Build All”, recompiling all your source files, regardless of whether they have changed.

Building a HI-TECH C project in MPLAB X is exactly the same as for a MPASM assembler project: click

on the “Build” or “Clean and Build” toolbar button, or select the equivalent items in the “Run” menu, to

compile and link your code. When it builds without errors and you are ready to program your code into your

PIC, select the “Run → Run Main Project” menu item, click on the “Make and Program Device” toolbar

button, or simply press F6.

CCS PCB

The process of creating a new CCS PCB project in MPLAB 8 is the same as that for HI-TECH C, except that

you need to select

the “CCS C

Compiler”

toolsuite, in the

project wizard, as

shown on the right.

Note that the free

version of CCS

PCB, bundled with

MPLAB 8, cannot

be used with

MPLAB X.

However, if you

purchase the most

recent version of

MPLAB X, you

can use MPLAB C

to create and build

CCS C projects, in

the same was as for

HI-TECH C.

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 13

CCS PCB Source code

The comment block at the start of CCS PCB programs can of course be similar to that for any other C

compiler (including HI-TECH C), but the comments should state that this code is for the CCS compiler.

It’s not as important for the comments to state which processor is being used, since, unlike HI-TECH C, CCS

PCB requires a ‘#device’ directive, used to specify which processor the code is to be compiled for.

Also unlike HI-TECH C, there is no “catch-all” header file, so you are expected to include the appropriate

‘.h’ file (found in the “devices” directory within the CCS PCB install directory), which defines all the

symbols relevant to the processor you are using. This file will incorporate the appropriate ‘#device’

directive, so you would not normally place that directive separately in your source code. Instead, at the start

of every CCS PCB program, you should include a line such as:

#include <10F200.h>

However, you will find that this file, for the 10F200, defines the pins as PIN_B0, PIN_B1, etc., instead of the

more commonly-used GP0, GP1, etc. This is true for the other 10F and 12F PICs as well. So to be able to

use the normal symbols, we can add these lines at the start of our code, when working with 10F or 12F PICs:

#define GP0 PIN_B0 // define GP pins

#define GP1 PIN_B1

#define GP2 PIN_B2

#define GP3 PIN_B3

#define GP4 PIN_B4

#define GP5 PIN_B5

(if you’re using a 10F device, you only need to define GP0 to GP3, because the 10Fs only have four pins)

The ‘#fuses’ directive is used to configure the processor.

For the 10F200, we have:

// ext reset, no code protect, no watchdog

#fuses MCLR,NOPROTECT,NOWDT

While for the 12F508 or 12F509, we also need to configure the oscillator:

// ext reset, no code protect, no watchdog, int RC clock

#fuses MCLR,NOPROTECT,NOWDT,INTRC

Again, although this is similar to the __CONFIG directive we know from MPASM, the configuration

symbols are different. For example, ‘NOPROTECT’ instead of ‘_CP_OFF’, and ‘INTRC’ instead of

‘_IntRC_OSC’.

To see which symbols to use for a given PIC, you need to consult the header file for that device.

In the same way as HI-TECH C, the user program starts with main():

void main()

{

 ; // user code goes here

}

And, as with HI-TECH C, the default start-up code, run before main() is entered, loads the factory

calibration value into OSCCAL, so there is no need to write code to do that.

As mentioned earlier, the approach taken by CCS PCB is to make much of the PIC functionality available

through built-in functions, reducing the need to access registers directly.

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 14

The ‘output_high()’ function loads the TRIS register to configure the specified pin as an output, and then

sets that output high. So to make GP1 an output and set it high, we can use simply:

 output_high(GP1); // configure GP1 (only) as an output and set high

However, as explained for the HI-TECH C version and in detail in baseline lesson 2, setting or clearing a

single pin may lead to potential “read-modify-write” problems, and it is safer to write a value to the whole

port (GPIO) in a single operation.

CCS C, we can do this with the ‘output_x()’ built-in function, which outputs an entire byte to port x:

 output_b(0b000010); // configure GPIO as all output and set GP1 high

Note that, as far as CCS is concerned, on a 10F200 or 12F508/509, GPIO is port ‘b’.

Also note that the ‘output_x()’ function configures the port with every pin as an output, before outputting

the specified value.

This behaviour of loading TRIS every time an output is made high (or low) makes the code simpler to write,

but can be slower and use more memory, so CCS PCB provides a ‘#use fast_io’ directive and

‘set_tris_X()’ functions to override this slower “standard I/O”, but for simplicity, and in the spirit of

CCS C programming style, we’ll keep this default behaviour for now.

To loop forever, we could use the ‘for(;;) {}’ loop used in the HI-TECH example above, but since the

standard CCS PCB header files define the symbol ‘TRUE’ (and HI-TECH C doesn’t), we can use:

 while (TRUE)

 { // loop forever

 ;

 }

Complete program

Here is the complete 10F200 version of the code to turn on an LED on GP1, using CCS PCB:

/**

* *

* Description: Lesson 1, example 1 *

* *

* Turns on LED. LED remains on until power is removed. *

* *

* *

* Pin assignments: *

* GP1 = indicator LED *

* *

**/

#include <10F200.h>

#define GP0 PIN_B0 // define GP pins

#define GP1 PIN_B1

#define GP2 PIN_B2

#define GP3 PIN_B3

/***** CONFIGURATION *****/

// ext reset, no code protect, no watchdog

#fuses MCLR,NOPROTECT,NOWDT

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 15

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 output_b(0b000010); // configure GPIO as all output and set GP1 high

 // Main loop

 while (TRUE)

 { // loop forever

 ;

 }

}

The 12F508/509 versions are the same, except that you need to #include a different header (12F508.h or

12F509.h, instead of 10F200.h), and change the #fuses directive, as shown earlier.

Building the project

To compile the source code in MPLAB 8, select “Project → Build”, press F10, or click on the “Make

Project” toolbar button:

This is the CCS equivalent to the HI-TECH “Build project” option, compiling all changed source files and

linking the object files and library functions to create an output ‘.hex’ file, which can be programmed into

the PIC as normal.

The other Project menu item or toolbar button, “Build All”, is equivalent to the HI-TECH C “Rebuild” or the

MPASM “Build All”, recompiling your entire project, regardless of what’s changed.

Comparisons

Even in an example as simple as turning on a single LED, the difference in approach between HI-TECH C

and CCS PCB is apparent.

The HI-TECH C code shows a closer correspondence to the assembler version, with the TRIS register being

explicitly written to.

On the other hand, in the CCS PCB example, GPIO is configured as all outputs and written to, through a

single built-in function that performs both operations, effectively hiding the existence of the TRIS register

from the programmer.

Example 2: Flashing an LED (20% duty cycle)

In baseline lesson 2, we used the same circuits as above, but made the LED flash by toggling the GP1

output. The delay was created by an in-line busy-wait loop.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 16

Baseline lesson 3 showed how to move the delay loop into a

subroutine, and to generalise it, so that the delay, as a multiple

of 10 ms, is passed as a parameter to the routine, in W.

This was demonstrated on the PIC12F509, using the circuit

shown on the right. If you are using the Gooligum baseline

training board, remember to remove the 10F200 from the ‘10F’

socket, before plugging the 12F509 into the ‘12F’ section of the

14-pin socket.

The example program flashed the LED at 1 Hz with a duty cycle

of 20%, by turning it on for 200 ms and then off for 800 ms, and

continually repeating.

Here is the main loop from the assembler code from baseline lesson 3:

main_loop

 ; turn on LED

 movlw b'000010' ; set GP1 (bit 1)

 movwf GPIO

 ; delay 0.2 s

 movlw .20 ; delay 20 x 10 ms = 200 ms

 pagesel delay10

 call delay10

 ; turn off LED

 clrf GPIO ; (clearing GPIO clears GP1)

 ; delay 0.8 s

 movlw .80 ; delay 80 x 10ms = 800ms

 call delay10

 ; repeat forever

 pagesel main_loop

 goto main_loop

HI-TECH C

We’ve seen how to turn on the LED on GP1, with:

 GP1 = 1; // set GP1

or

 GPIO = 0b000010; // set GP1 (bit 1 of GPIO)

And of course, to turn the LED off, it is simply:

 GP1 = 0; // clear GP1

or

 GPIO = 0; // (clearing GPIO clears GP1)

These statements can easily be placed within an endless loop, to repeatedly turn the LED on and off. All we

need to add is a delay.

HI-TECH C provides a built-in function, ‘_delay(n)’, which creates a delay ‘n’ instruction clock cycles

long. The maximum possible delay depends on which PIC you are using, but it is a little over 50,000,000

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 17

cycles. With a 4 MHz processor clock, corresponding to a 1 MHz instruction clock, that’s a maximum delay

of a little over 50 seconds.

The compiler also provides two macros: ‘__delay_us()’ and ‘__delay_ms()’, which use the

‘_delay(n)’ function create delays specified in µs and ms respectively. To do so, they reference the

symbol “_XTAL_FREQ”, which you must define as the processor oscillator frequency, in Hertz.

Since our PIC12F509 is running at 4 MHz, we have:

#define _XTAL_FREQ 4000000 // oscillator frequency for _delay()

Then, to generate a 200 ms delay, we can write:

 __delay_ms(200); // stay on for 200 ms

Complete program

Putting these delay macros into the main loop, we have:

/**

* *

* Description: Lesson 1, example 2 *

* *

* Flashes an LED at approx 1 Hz, with 20% duty cycle *

* LED continues to flash until power is removed. *

* *

* *

* Pin assignments: *

* GP1 = flashing LED *

* *

**/

#include <htc.h>

/***** CONFIGURATION *****/

// ext reset, no code protect, no watchdog, int RC clock

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & OSC_IntRC);

#define _XTAL_FREQ 4000000 // oscillator frequency for _delay()

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 TRIS = 0b111101; // configure GP1 (only) as an output

 // Main loop

 for (;;)

 {

 GPIO = 0b000010; // turn on LED on GP1 (bit 1)

 __delay_ms(200); // stay on for 200 ms

 GPIO = 0; // turn off LED (clearing GPIO clears GP1)

 __delay_ms(800); // stay off for 800 ms

 } // repeat forever

}

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 18

CCS PCB

In the previous example, we turned on the LED with:

 output_high(GP1); // set GP1

or

 output_b(0b000010); // set GP1 (bit 1 of GPIO)

Similarly, the LED can be turned off by:

 output_low(GP1); // clear GP1

or

 output_b(0); // (clearing GPIO clears GP1)

In a similar way to HI-TECH C, CCS PCB provides built-in delay functions: ‘delay_us()’ and

‘delay_ms()’, which create delays of a specified number of µs and ms respectively. They accept a 16-bit

unsigned value (0-65535) as a parameter. Unlike the HI-TECH C macros, which can only generate a

constant delay, the CCS delay functions accept either a variable or a constant as a parameter.

Since the functions are built-in, there is no need to include any header files before using them. But you must

still specify the processor clock speed, so that the delays can be created correctly. This is done using the

‘#use delay’ pre-processor directive to the processor oscillator frequency, in Hertz.

For example, for our PIC12F509 is running at 4 MHz:

#use delay (clock=4000000) // oscillator frequency for delay_ms()

To create a 200 ms delay, we can use:

 delay_ms(200); // stay on for 200 ms

Complete program

Here is the complete code to flash an LED on GP1, with a 20% duty cycle, using CCS PCB:

/**

* *

* Description: Lesson 1, example 2 *

* *

* Flashes an LED at approx 1 Hz, with 20% duty cycle *

* LED continues to flash until power is removed. *

* *

* *

* Pin assignments: *

* GP1 = flashing LED *

* *

**/

#include <12F509.h>

#define GP0 PIN_B0 // define GP pins

#define GP1 PIN_B1

#define GP2 PIN_B2

#define GP3 PIN_B3

#define GP4 PIN_B4

#define GP5 PIN_B5

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 19

/***** CONFIGURATION *****/

// ext reset, no code protect, no watchdog, int RC clock

#fuses MCLR,NOPROTECT,NOWDT,INTRC

#use delay (clock=4000000) // oscillator frequency for delay_ms()

/***** MAIN PROGRAM *****/

void main()

{

 // Main loop

 while (TRUE)

 {

 output_b(0b000010); // turn on LED on GP1 (bit 1)

 delay_ms(200); // stay on for 200ms

 output_b(0); // turn off LED (clearing GPIO clears GP1)

 delay_ms(800); // stay off for 800ms

 } // repeat forever

}

Example 3: Flashing an LED (50% duty cycle)

The first LED flashing example in baseline lesson 2 used an XOR operation to flip the GP1 bit every 500

ms, creating a 1 Hz flash with a 50% duty cycle.

In that example, we used a shadow register to maintain a copy of the port register (GPIO), and flipped the

shadow bit corresponding to GP1, instead of working on port directly. As that lesson explained, this was to

avoid potential problems due to read-modify-write operations on the port bits. If you’re a little hazy on this

concept, it would be a good idea to review that section of baseline lesson 2.

As noted earlier, when you use a statement like ‘GP1 = 1’ in HI-TECH C, or ‘output_high(GP1)’ in

CCS PCB, the compilers translate those statements into bit set or clear instructions, acting directly on the

port registers, which may lead to read-modify-write problems.

To avoid such problems, shadow variables can be used in C programs, in the same way that shadow registers

are used in assembler programs.

To demonstrate this, we can continue to use the circuit from the previous example, and model our code on

the corresponding example from baseline lesson 3:

;***** Initialisation

start

 movlw b'111101' ; configure GP1 (only) as an output

 tris GPIO

 clrf sGPIO ; start with shadow GPIO zeroed

;***** Main loop

Note: Any C statements which directly modify individual port bits may be subject to read-modify-

write considerations.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 20

main_loop

 ; toggle LED on GP1

 movf sGPIO,w ; get shadow copy of GPIO

 xorlw b'000010' ; toggle bit corresponding to GP1 (bit 1)

 movwf sGPIO ; in shadow register

 movwf GPIO ; and write to GPIO

 ; delay 0.5 s

 movlw .50 ; delay 50 x 10 ms = 500 ms

 pagesel delay10 ; -> 1 Hz flashing at 50% duty cycle

 call delay10

 ; repeat forever

 pagesel main_loop

 goto main_loop

HI-TECH C

You might expect that to toggle GP1, you could use the statement:

GP1 = ~GP1;

Unfortunately, HI-TECH C doesn’t support that, reporting “illegal operation on bit variable”.

You can, however, use:

GP1 = !GP1;

This statement is also supported:

 GP1 = GP1 ? 0 : 1;

It works because bit variables, such as GP1, hold either a ‘0’ or ‘1’, representing ‘false’ or ‘true’

respectively, and so can be used directly in a conditional expression like this.

However, since these statements modify individual bits in GPIO, to avoid potential read-modify-write issues

we’ll instead use a shadow variable, which can be declared and initialised with:

uint8_t sGPIO = 0; // shadow copy of GPIO

This makes it clear that the variable is an unsigned, eight-bit integer. We could have declared this as an

‘unsigned char’, or simply ‘char’ (because ‘char’ is unsigned by default), but you can make your code more

portable and clearer by using the C99 standard integer types defined in the ‘stdint.h’ header file.

To define these standard integer types, add this line toward the start of your program:

#include <stdint.h>

This variable declaration could be placed within the main() function, which is what you should do for any

variable that is only accessed within main(). However, a variable such as a shadow register may need to be

accessed by other functions. For example, it’s quite common to place all of your initialisation code into a

function called init(), which might initialise the shadow register variables as well as the ports, and your

main() code may also need to access them. It is often best to define such variables as global (or “external”)

variables toward the start of your code, before any functions, so that they can be accessed throughout your

program.

But remember that, to make your code more maintainable and to minimise data memory use, you should

declare any variable which is only used by one function, as a local variable within that function.

We’ll see examples of that later, but in this example we’ll define sGPIO as a global variable.

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 21

Flipping the shadow copy of GP1 and updating GPIO, can then be done by:

 sGPIO ^= 0b000010; // toggle shadow bit corresponding to GP1

 GPIO = sGPIO; // write to GPIO

Complete program

Here is how the HI-TECH C code to flash an LED on GP1, with a 50% duty cycle, fits together:

/**

* *

* Description: Lesson 1, example 3 *

* *

* Flashes an LED at approx 1 Hz. *

* LED continues to flash until power is removed. *

* *

* *

* Pin assignments: *

* GP1 = flashing LED *

* *

**/

#include <htc.h>

#include <stdint.h>

/***** CONFIGURATION *****/

// ext reset, no code protect, no watchdog, int RC clock

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & OSC_IntRC);

#define _XTAL_FREQ 4000000 // oscillator frequency for _delay()

/***** GLOBAL VARIABLES *****/

uint8_t sGPIO = 0; // shadow copy of GPIO

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 TRIS = 0b111101; // configure GP1 (only) as an output

 // Main loop

 for (;;)

 {

 // toggle LED on GP1

 sGPIO ^= 0b000010; // toggle shadow bit corresponding to GP1

 GPIO = sGPIO; // write to GPIO

 // delay 500 ms

 __delay_ms(500);

 } // repeat forever

}

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 22

CCS PCB

CCS PCB provides a built-in function specifically for toggling an output pin: ‘output_toggle()’. To

toggle GP1, all that is needed is:

 output_toggle(GP1);

But since this function performs a read-modify-write operation on GPIO, we’ll use a shadow variable, which

can be declared and initialised with:

unsigned int8 sGPIO = 0; // shadow copy of GPIO

CCS PCB doesn’t come with an equivalent to ‘stdint.h’, so we can’t use the C99 standard ‘uint8_t’ type,

as we did with HI-TECH C. We could have declared this variable as a ‘char’, and that would be ok, but by

declaring it as an ‘unsigned int8’, it’s very clear that this variable is an unsigned, eight-bit integer.

And, as in the HI-TECH C example, we’ll define this as a global variable, outside main(), so that it can be

accessed by any other functions you add to the code in future.

Toggling the shadow copy of GP1 is then the same as for HI-TECH C:

 sGPIO ^= 0b000010; // toggle shadow bit corresponding to GP1

To write the result to GPIO, we can use the output_b() built-in function, as before:

 output_b(sGPIO); // write to GPIO

 [Recall that CCS PCB refers to GPIO on the 10F and 12F PICs as port B.]

Complete program

Here is the complete CCS PCB code to flash an LED on GP1, with a 50% duty cycle:

/**

* *

* Description: Lesson 1, example 3 *

* *

* Flashes an LED at approx 1 Hz. *

* LED continues to flash until power is removed. *

* *

* *

* Pin assignments: *

* GP1 = flashing LED *

* *

**/

#include <12F509.h>

#define GP0 PIN_B0 // define GP pins

#define GP1 PIN_B1

#define GP2 PIN_B2

#define GP3 PIN_B3

#define GP4 PIN_B4

#define GP5 PIN_B5

/***** CONFIGURATION *****/

// ext reset, no code protect, no watchdog, int RC clock

#fuses MCLR,NOPROTECT,NOWDT,INTRC

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 23

#use delay (clock=4000000) // oscillator frequency for delay_ms()

/***** GLOBAL VARIABLES *****/

unsigned int8 sGPIO = 0; // shadow copy of GPIO

/***** MAIN PROGRAM *****/

void main()

{

 // Main loop

 while (TRUE)

 {

 // toggle LED on GP1

 sGPIO ^= 0b000010; // toggle shadow bit corresponding to GP1

 output_b(sGPIO); // write to GPIO

 // delay 500ms

 delay_ms(500);

 } // repeat forever

}

Comparisons

Although this is a very small, simple application, it is instructive to compare the source code size (lines of

code
6
) and resource utilisation (program and data memory usage) for the two compilers and the assembler

version of this example from baseline lesson 3.

Source code length is a rough indication of how difficult or time-consuming a program is to write. We

expect that C code is easier and quicker to write than assembly language, but that a C compiler will produce

code that is bigger or uses memory less efficiently than hand-crafted assembly. But is this true?

It’s also interesting to see whether the delay functions provided by the C compilers generate accurately-timed

delays, and how their accuracy compares with our assembler version.

Memory usage is reported correctly by MPLAB for assembler and HI-TECH C projects, but note that the

CCS PCB compiler does not accurately report data memory usuage to MPLAB. We can get it from the

‘*.lst’ file generated by the CCS compiler.

The MPLAB simulator
7
 can be used to accurately measure the time between LED flashes – ideally it would

be exactly 1.000000 seconds, and the difference from that gives us the overall timing error.

Here is the resource usage and accuracy summary for the “Flash an LED at 50% duty cycle” programs:

Flash_LED

6
 ignoring whitespace, comments, and “unnecessary” lines such as the redefinition of pin names in the CCS C examples

7
 a topic for a future tutorial?

Assembler / Compiler
Source code

(lines)

Program memory

(words)

Data memory

(bytes)

Delay accuracy

(timing error)

Microchip MPASM 28 34 4 0.15%

HI-TECH C (Lite mode) 10 35 6 0.0024%

CCS PCB 9 43 6 0.0076%

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 1: Basic Digital Output Page 24

The assembler version called the delay routine as an external module, so it’s quite comparable with the C

programs which make use of built-in delay functions. Nevertheless, the assembly language source code is

around three times as long as the C versions! This illustrates how much more compact C code can be.

As for C being less efficient – the HI-TECH C version is barely larger than the assembler version, despite

having most compiler optimisations disabled in “Lite” mode. This is largely because the built-in delay code

is highly optimised, but it does show that C is not necessarily inherently inefficient – at least for simple

applications like this.

On the other hand, the CCS compiler is noticeably less efficient in this example, generating code 26% bigger

than the assembler version.

Finally, note that the time delays in both C versions are amazingly accurate!

Summary

Overall, we have seen that, although HI-TECH and CCS take quite different approaches, basic digital output

operations can be expressed succinctly using either C compiler.

We saw that the CCS approach is to use built-in functions to perform operations which may take a number of

statements in HI-TECH C to accomplish (such as configuring pin direction and outputting a value in a single

statement). Whether this approach is better is largely a matter of personal style, although having so many

built-in functions available can make development much easier.

Whichever compiler you use, it could be argued that, because the C code is significantly shorter than

corresponding assembler code, with the program structure more readily apparent, C programs are more

easily understood, faster to write, and simpler to debug, than assembler.

So why use assembler? One argument is that, because assembler is closer to the hardware, the developer

benefits from having a greater understanding of exactly what the hardware is doing; there are no unexpected

or undocumented side effects, no opportunities to be bitten by bugs in built-in or library functions. This

argument may apply to CCS PCB, which as we have seen, tends to hide details of the hardware from the

programmer; it is not always apparent what the program is always doing “behind the scenes”. But it doesn’t

really apply to HI-TECH C, which exposes all the PIC’s registers as variables, and the programmer has to

modify the register contents in the same way as would be done in assembler.

Although it’s not really apparent in the comparison table above, C compilers consistently use more resources

than assembler (for equivalent programs). There comes a point, as programs grow, that a C program will not

fit into a particular PIC, while the same program would fit if it had been written in assembler. In that case,

the choice is to write in assembler, or use a more expensive PIC. For a one-off project, a more expensive

chip probably makes sense, whereas for volume production, using resources efficiently by writing in

assembly is the right choice. And if you need to write a really tight loop, where every instruction cycle

counts, assembly may be the only viable choice. Although again, using a faster, but more expensive chip

may be a better solution, unless your application is high-volume.

If this is a hobby for you, then it’s purely a question of personal preference, because as we have seen, both

the HI-TECH and CCS “free” C compilers, as well as assembler, are viable options.

In addition to providing an output (such as a blinking LED), PIC applications usually have to respond

sensors and/or user input.

In the next lesson we’ll see how to use our C compilers to read and respond to switches, such as pushbuttons.

And since real switches “bounce”, which can be a problem for microcontroller applications, we’ll look at

ways to “debounce” them, in software.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_2.pdf

	Introduction to PIC Programming
	Programming Baseline PICs in C
	Lesson 1: Basic Digital Output
	Introducing HI-TECH C and CCS PCB
	Custom Computer Services (CCS) “PCB”
	Microchip “HI-TECH C”
	Data Types

	Example 1: Turning on an LED
	HI-TECH C
	MPLAB 8.xx
	MPLAB X
	HI-TECH C Source code
	Complete program
	Building the project

	CCS PCB
	CCS PCB Source code
	Complete program
	Building the project

	Comparisons

	Example 2: Flashing an LED (20% duty cycle)
	HI-TECH C
	Complete program

	CCS PCB
	Complete program

	Example 3: Flashing an LED (50% duty cycle)
	HI-TECH C
	Complete program

	CCS PCB
	Complete program

	Comparisons

	Summary

